

Single Event Response of Embedded Power PCs in a Xilinx Virtex- 4 FPGA for a Space Application

C. Poivey¹, M. Berg¹, M. Friendlich¹, H. Kim¹,
 D. Petrick², S. Stansberry³, K. LaBel²,
 C. Seidleck¹, A. Phan¹, T. Irwin¹

MEI Technologies
 NASA – GSFC
 USC/ISI

Outline

- Introduction
- Test Set-up and Conditions
- Destructive Heavy-ion Test
- Heavy-ion SEE Test
- Proton SEE Test

Introduction-Background

Mission

- Express Logistic Carrier (ELC)
- International Space Station (ISS) radiation environment
 - Moderate SEE requirements
 - Moderate TID requirements

Application

- Embedded computer (Space cube)
- Uses two XC4VFX60 FPGAs: four Power PC processors
 - Each processor is allocated 50% of FPGA fabric and is considered as an independent node.
- Four processors run independently of each other, and results are voted on in a separate radiation hardened (RH) FPGA.
 - RH FPGA traps error condition and flags faulty processor node
 - RH FPGA restores PPC functionality (warm reset, full reboot, reconfiguration,...)
- No mitigation in FPGA design except scrubbing of configuration memory to keep processors running as long as possible
 - External scrub
 - Self scrub using FPGA Internal Configuration Access Port (ICAP)

Introduction – Test Approach

Device

- XC4VFX60 FPGA
 - Virtex-4, embeds two power PC405 cores
 - 90 nm CMOS bulk commercial process
 - Some radiation data available on Virtex-4, but not on versions with PC core.
- Test approach
 - Destructive test (go no go)
 - No die thinning
 - SEE Tests
 - Die thinning (100 mm)
 - Heavy-ion and protons
 - TID tests

Test Set-up

Test Set-up

DUT Design

+ shift registers

2 versions of DUT design: with and without self-scrubbing

NASA

Test Conditions

Destructive Test

- Test samples from Xilinx
- Unshaved dice
- DUT design without highspeed link
- No implemention with selfscrubbing
- External scrubbing at 32 MHz
- PPC test program running from BRAM
- Multi-interrupt test program sending interrupt requests to each PPC every second
- No readback of configuration memory after each run
- Heavy-ion test at MSU with 106 MeV/u Xe beam
- Tests at 80°C die temperature

Full SEE tests

- Test samples from flight lot
- Shaved dice (100 mm) for heavy-ion test
- DUT design with high-speed link
- One implementation with self scrubbing
- External scrubbing at 32 MHz
- PPC test programs running from external SRAM
- Multi-interrupt test program sending interrupt requests to each PPC every 100 ms.
- Counter program
- Heavy ion test TAMU with 25 MeV/u beams
- Protons tests at IUCF
- Readback of configuration memory after each run
- No heating (~65°C die)

Destructive Test

- •MSU cyclotron:
 - Xe beam, 106 MeV/u
 (14.4 GeV) after
 scattering foil
 - •12" of Air between scattering foil and DUT
 - •DUT delidded
 - •Flux between 25 and 300 #/cm²-s

LET=19 MeVcm²/mg at normal incidence

LET=30 MeVcm²/mg at 45 degrees inclination

Active part of the die

Heavy-Ion SEE Tests, Readback Errors

Heavy-Ion SEE Tests, SEFI

Protons SEE Tests, Readback Errors

Proton SEE Tests, SEFI

Conclusions

- Data are still under analysis
 - Recovery after SEFI
 - Readback files
 - Data errors
- No destructive events up to a LET of 60 MeVcm²/mg
- No SEFI requires a power cycle to recover from